
Lab 1

MIPS R10000

This exercise is based on and refers to the MIPS R10000 Superscalar Micro-
processor document, which can be found on the course web page.

1 Pipeline and Register Renaming

1. Explain why in the 3rd stage of the pipeline (see Figure 2) the register
file is read in the 2nd half of each cycle. What are the advantages and
disadvantages of such an implementation?

2. Figure 5 describes register renaming. Why are the destination and source
registers represented with 5 bits in the original instruction, and with 6
bits after the renaming?

3. Specify the function of the queues, active lists, and map tables in the
R10000. Relate each of these to the structures described in the course
(reservation stations, ROB, ...).

4. Describe the role of the components Rdy, OpA, OpB, OpC, Dest, Old Dest,
Log Dest, Tag, and D in Figure 5.

5. How many memory bits are needed for the FP queue, the active list (with-
out the CC bits), the FP register map table, the free register list, and the
FP busy bit table? Justify your answers.

6. How many read ports are there in the FP busy bit table? How many read
ports and how many write ports are there in the FP map table? Justify
your answers.

7. Explain how each kind of dependency is detected and how each is handled.

1

8. Using the tables in annex, describe the behaviour of the processor execut-
ing the following program1. You should complete the active lists, the FP
queue and address queue, the FP register map table, the busy bit table, the
free list, and the position of the instructions in the pipeline for each cycle.
Use one copy of the tables per cycle (in Excel, use a separate sheet for
each cycle). Write all numbers in hexadecimal. Use the following hints
and assumptions to simplify the simulation:

� Assume the data and instruction caches never raise a miss.

� Assume all queues are empty at the beginning.

� Assume integer register 1 ($I1) is mapped to physical register ($I0x01).

� Assume all instructions after #00000010 are NOPs.

� Assume that after issue, all instructions spend exactly one cycle in
each applicable stage—even, e.g., the SQRT.S instruction.

� Assume floating point results are first available in the write-back
stage.

� Remember that internal components are usually structured as they
are for a good reason (or reasons).

� Remember that creating new register mappings, removing newly-
allocated registers from the free list, and marking those registers as
busy must all occur in the same cycle.

� Remember to carefully consider the timing and sequence of register
write-back, instruction issue, removal from instruction queues, and
active list updates.

#00000001 LDC1 $F0, #0000($I1)
#00000002 LDC1 $F1, #0001($I1)
#00000003 LDC1 $F2, #0002($I1)
#00000004 LDC1 $F3, #0003($I1)
#00000005 MUL.S $F4, $F0, $F3
#00000006 MUL.S $F5, $F1, $F2
#00000007 SUB.S $F4,$F4, $F5
#00000008 ADD.S $F5, $F0, $F1
#00000009 MUL.S $F9, $F5, $F5
#0000000A MUL.S $F10, $F4, $F0
#0000000B SUB.S $F9, $F9,$F10
#0000000C SQRT.S $F9, $F9
#0000000D SDC1 $F4, #0004($I1)
#0000000E SDC1 $F5, #0005($I1)
#0000000F SDC1 $F9,#0006($I1)
#00000010 SDC1 $F10, #0007($I1)

1LDC1 = load double word from memory
SDC1 = store double word to memory
instr.S = floating point instruction (example multiplication = MUL.S)

2

2 Exception Handling

1. When an exception occurs, the processor must restore its state to exactly
match the programmer’s expectation precisely when the programmer ex-
pects that exception to arise (for example, all the instructions executed
after the faulty instruction should be discarded). Explain how the R10000
achieves this goal.

2. In the previous program, what happens if instruction #00000006 gener-
ates an overflow exception? Describe how the processor restores its state
according to information it has in the queues and active lists and why the
state is restored in this way.

3 Branch Prediction

1. The R10000 is able to predict branches. What kind of algorithm does it
use? Is it dynamic or static prediction? Describe the state machine the
algorithm uses.

2. What happens if the prediction is not correct? Describe the processor’s
behaviour in detail.

3. Explain why there is a NOP after the branch in the following program.
Change the program to avoid such an instruction.

#00000001 LD $I1, #0000($I10)
#00000002 SUB $I17,$I17, $I17

loop: #00000003 LD $I5, #0000($I2)
#00000004 LD $I6, #0000($I3)
#00000005 MUL $I5, $I6, $I5
#00000006 SD $I5, #0000($I4)
#00000007 SUBI $I1, $I1, 1
#00000008 ADDI $I2, $I2, 4
#00000009 ADDI $I3, $I3, 4
#0000000A ADDI $I4, $I4, 4
#0000000B BEQ $I1, $I17, loop
#0000000C NOP
#0000000D LD $I1, #0000($I10)
#0000000E MULI $I1, $I1, 4
#0000000F SUB $I4, $I4, $I1

3

